Project: Fire Behaviour | Landscape Flammability

Understanding the origin and development of extreme and mega bushfires

Extreme and mega fires result in significant damage to property and infrastructure and are associated with large suppression costs. These events occur when separate fires merge. Their increase occurrence in recent seasons highlight the importance of developing tools and technologies that better predict extreme events to aid fire response and inform strategies for greater resilience. This project combines fire field experiments with computer modelling to determine factors driving extreme fire development, and develop new knowledge and models. These enable better prediction of active fires, enhance the knowledge base of fire managers for critical decision making and improves risk modelling and mitigation planning for fire-prone communities.

Project timeline: 07/2021 – 06/2024

More Projects

Reducing landscape fire risk with green fire breaks

Currently in Australia the biodiversity crisis and wildfire risks are in direct opposition to one another. Increased wildfire risks under climate change place pressures on sectors and organisations attempting to revegetate the landscape and ...

Future fire regimes and their impact on mammal populations

Fire drives patterns in mammal biodiversity across the globe.  However, due to climate change fire regimes are shifting and this impacts species and their populations. It is important we gain a better understanding of how species are affected ...

Effects of fire intensity and aridity on plant resprouting

Plant resprouting is when a plant regrows new shoots, stems and leaves from its existing root system or above-ground biomass after being cut, damaged, or burned. Resprouting is a remarkable survival strategy that allows plants to adapt to ...