Project: Fire Behaviour

Innovating bushfire behaviour monitoring for future preparedness

Accurate quantification of heat fluxes is paramount to our understanding of fire, its effects, and fire management strategies. Currently, many studies rely on proxies (e.g., fire severity or fireline intensity) that are estimated after the fire has occurred, making them poor indicators of the actual heat fluxes emitted by the fire. This project aims to develop a robust and cutting-edge fire monitoring package that will better characterise wildfire properties at the field scale and in real-time. It will transform the way wildfire behaviour is measured in the field and will do this by bringing together experts in fire behaviour and management, mechanical engineering, aerodynamics and electronics.  

Project timeline: 01/2024 – 12/2024

More Projects

Restoration of eucalypt forest in Wilsons Promontory National Park- Implications for forest values and site and landscape flammability

Wilsons Promontory provides an example of how repeated short interval fires can prevent the regeneration of a Eucalyptus canopy in a range of ecological vegetation classes. The ‘destocking’ of forests can dramatically alter the composition, ...

Investigation of the ignition likelihood of building materials by firebrand piles

This project seeks to understand the firebrand ignition of building materials. It will relate the ignition propensity to fundamental material properties and characterize thermal and gaseous environments for various firebrand densities, wind ...

Future fire regimes in the Pyrocene

Large and severe wildfires impact people and places globally, and recent examples of extensive wildfires around the world – from Southeastern Australia, Western USA, Greece, Portugal, Canada, and, unexpectedly, in the historically cool ...