Project: Fire Behaviour

Multiscale experimentation and simulation of wildfire spotting

Wildfires pose a significant risk to human and environmental assets around the world, especially in the Mediterranean region and Australia. Firebrands generated in wildfires are one of the most dangerous exposure mechanisms and the main cause of the house and life loss. They can be lifted by fire plume and transported far ahead of the firefront by wind (short-range) or convective column (medium- and long-range), initiating new fires and igniting structures. This process is called spotting and consists of generation, transport and fuel ignition mechanisms. Although short-, medium- and long-range spotting are parts of the same process, they are still studied separately, and there are no multiscale models that include all mechanisms. The key idea of this project is that spotting must be considered simultaneously at all scales in order to understand the generation (combustion) and transport (atmospheric convection) of firebrands, as well as the ignition mechanism of fuel beds and structures (fire dynamics).

Project timeline: 01/2023 – 06/2027

More Projects

The influence of fire severity on faunal persistence

Over half of all terrestrial systems require fire to maintain ecological integrity. In regions where fire is a frequent disturbance, there is ongoing pressure on the community to evolve and adapt to a specific fire regime. However, with the ...

Wildfire evidence briefs

How do we translate complex and evolving scientific knowledge about wildfire into clear guidance for decision makers and the public? Health and medicine have a strong track record of synthesising and summarising complex information on specific ...

Fire management approaches to mitigate the impacts of bushfires on ecological values

This project explores the ability of fuel management activities to mitigate bushfire impacts on ecological values. It does this through the integration of the landscape simulation modelling software ‘Fire Regimes and Operations Simulations ...